Mitigating the Effects of Process Variation in Ultra-low Voltage Chip Multiprocessors using Dual Supply Voltages and Half-Speed Stages∗

نویسندگان

  • Timothy N. Miller
  • Renji Thomas
  • Radu Teodorescu
چکیده

Energy efficiency is a primary concern for microprocessor designers. One very effective approach to improving the energy efficiency is to lower chip supply voltage very near to the transistor threshold voltage. This reduces power consumption dramatically, improving energy efficiency by an order of magnitude. Low voltage operation, however, increases the effects of parameter variation resulting in significant frequency heterogeneity between (and within) otherwise identical cores. This heterogeneity severely limits the maximum frequency of the entire CMP. We present a combination of techniques aimed at reducing the effects of variation on the performance and energy efficiency of near-threshold, manycore CMPs. Dual Voltage Rail (DVR), mitigates core-to-core variation with a dual-rail power delivery system that allows post-manufacturing assignment of different supply voltages to individual cores. This speeds up slow cores by assigning them to a higher voltage and saves power on fast cores by assigning them to a lower voltage. Half-Speed Unit (HSU) mitigates within-core variation by halving the frequency of select functional blocks with the goal of boosting the frequency of individual cores, thus raising the frequency ceiling for the entire CMP. Together, these variation-reduction techniques result in almost 50% improvement in CMP performance for the same power consumption over a mix of workloads.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultra Low-voltage Differential Static D Flip-Flop for High Speed Digital Applications

In this paper we present an ultra low-voltage and high speed D flip-flop. The flip-flop has an increased current level compared to standard CMOS circuits operating at low supply voltages. The increased current level is obtained by using a synchronized capacitive coupling to a semi floating-gate. The delay of the static differential flip-flop presented is less than 12% compared to conventional d...

متن کامل

Static Differential Ultra Low-Voltage Domino CMOS logic for High Speed Applications

In this paper we present a novel static differential ultra low-voltage (ULV) CMOS logic style for High-Speed applications . The proposed logic style is aimed for high speed serial adders in ultra low-voltage applications. The differential ultra low-voltage inverter presented have less than 10% of the delay than standard CMOS inverters for supply voltages less than 500mV . The simulated data pre...

متن کامل

NP-Domino, Ultra-Low-Voltage, High-Speed, Dual-Rail, CMOS NOR Gates

In this paper, novel ultra low voltage (ULV) dual-rail NOR gates are presented which use the semi-floating-gate (SFG) structure to speed up the logic circuit. Higher speed in the lower supply voltages and robustness against the input signal delay variations are the main advantages of the proposed gates in comparison to the previously reported domino dual-rail NOR gates. The simulation results i...

متن کامل

Chip Formation Process using Finite Element Simulation “Influence of Cutting Speed Variation”

The main aim of this paper is to study the material removal phenomenon using the finite element method (FEM) analysis for orthogonal cutting, and the impact of cutting speed variation on the chip formation, stress and plastic deformation. We have explored different constitutive models describing the tool-workpiece interaction. The Johnson-Cook constitutive model with damage initiation and damag...

متن کامل

Characterization and mitigation of process variation in digital circuits and systems

Process variation threatens to negate a whole generation of scaling in advanced process technologies due to performance and power spreads of greater than 30-50%. Mitigating this impact requires a thorough understanding of the variation sources, magnitudes and spatial components at the device, circuit and architectural levels. This thesis explores the impacts of variation at each of these levels...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011